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TABLE 1: Relative Energies for All-Carbon Phases	

LAMMPS (Feb 11 2011)	
 Nielson et al.	


Compound	
 Ereax (kcal/mol)	
 Ereax/c (kcal/mol)	
  Eref (kcal/mol)	
 EReaxFF (kcal/mol)	

Graphite	
 0.00	
 0.00	
 0.00	
 0.00	

Graphene	
 1.57	
 1.57	
 1.30	
 1.56	

10_10 Nanotube	
 2.72	
 2.72	
 2.80	
 2.83	

C60 Buckyball	
 11.44	
 11.44	
 11.50	
 11.30	


Figure 1. DFT and ReaxFF relative stabilities for small all-carbon fragments.	


Identical results 
between both 
LAMMPS codes	


Similar results between 
LAMMPS codes and Nielson 
et al.	


In general the LAMMPS 
codes give a lower stability 
than in Nielson et al. for 
rings	


Large lone-pair energy for C2 
with c++ code	
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